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Which model is best?
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There are many statistical methods used to ‘fit” models to
data and there are many possible scenarios from which
mechanical model can be built.
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What are some measures of model fit that
you could use?

R-squared (R-carré)

Least squares (Moindres carrés)

Maximum likelihood (Maximum de vraisemblance)

(manakaiky indrindra ny tena izy) Hirotugu Akaike
AlC

(uses least squares or log-likelihood but
penalizes by number of fitted parameters)
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Likelihood Vraisemblance

SUMMARY FG3% FT%
Career 32.7 83.5

L@®) = | [rexile)
[(8|z) = log L(6|x)

Examples:

R function : dbinom(x, size, prob, log=T)

=) R function : dbinom(8, 10, 0.835) = ?



Likelihood Vraisemblance

SUMMARY FG3% FT%
Career 32.7 83.5

L@®) = | [rexile)
[(8|z) = log L(6|x)

Examples:

R function : dbinom(x, size, prob, log=T)

=) R function : dbinom(8, 10, 0.835) = 0.289
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Optimization/maximization

A function and its derivative

* What happen when the
derivative is:

* negative? f(x) and '(x)
* positive?
* zero?

# reaching a maximum (finite)

value?

From Tanjona Ramiadantsoa



Optimization/maximization

A function and its derivative

* What happen when the
derivative is:

* negative? f(x) and f(x)
* positive?
* zero?

# reaching a maximum (finite)

value?

From Tanjona Ramiadantsoa

The R function ‘optim’ can be used to minimize these
measures of model difference from the data.



Least squares
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Adding covariates and R?
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Adding covariates almost always increases
the R2 - so a key question is when to stop.



What to choose”?




Least square AlIC

x5

AIC = N = In(
N

)+ 2K

N: Number of observations
$S.: Sum squareof errors
K: Number of parameters

The smaller the AIC the better



Least square AIC

More parameter is not always good

rd

+28)

N: Number of observations
$S.: Sum squareof errors
K: Number of parameters

SS,
N

AIC = N = In(

(AIC = —2In(L) + 2k)

The smaller the AIC the better



An example of model selection:
Bartonella spp. in Madagascar rats

Epidemics 20 (2017) 56-66

Contents lists available at ScienceDirect
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Bartonella spp.

* Persistent erythrocytic bacteria that are sometimes zoonotic
 Vectored by ticks, fleas, sand flies, mosquitoes

* Some species infect humans
* Bartonella bacilliformis = Carrion’s disease
» Bartonella henselae = cat scratch fever
* Bartonella quintana = trench fever




We first collected samples from rats from two
sites in Madagascar.
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Statistically, we demonstrated an association between genotypes
of Bartonella spp. found in rats and their ectoparasites.
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Then, we asked:
How does the rate of becoming
infected vary with age?
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Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

BI

for a persistent, non-immunizing infection
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Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

with a persistent infection, A
we can assume that, if not 1_1
infected, you must be
susceptible....

where A, the force of infection, is the per capita rate at
which susceptible hosts become infected



Age-prevalence data allows for powerful inference
into the dynamics of pathogen transmission.

1-1 I
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and o is the rate of recovery from infection
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Age-prevalence data allows for powerful inference into
the dynamics of pathogen transmission.
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Compare using AIC = 2K - 2In(L)

similar techniques can also be applied to age-
seroprevalence data for immunizing infections



Let’s see which model works best
for your data!



Look at the data !
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Try the model! Andramo kely
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Keep trying! Ald o !
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Keep trying!

0.754

Bartonella spp. Prevalence

0.25+

0.00+

AIC=114

|
dl(a)
da

= Ma)(1-1(a))

strain

@ eglizabethae

¢ phoceensis

model

— 1 age class

- 3 age class

count

o 10
) 20
() 30

100 150 200
Age (Days)



Keep trying!
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We found that an SI model offered the best fit to B. phoceensis data
while the SIS model offered the best fit to the B. elizabethae data.
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The age-structured FOI identifies age cohorts most influential in
an epidemic. Juveniles showed the highest FOI.
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